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A method is presented for the direct and efficient computation
of certain characteristics of differential eigenvalue problems. The
method s based on the differentiation of the governing equations
with respect to one or more of the parameters of the associated
dispersion relation. The new problem (or problems), coupled with
the original problem, is solved 1o direcily compute a certain required
chatacteristic (a.g., the maximum disturbance growth rate), The
method is applied to two problems in boundary-layer stability: the
viscous instability of incompressible flow over a flat piate with suc-
tion and the inviscid instability of compressible flow over a flat
plate with different wall and flow conditions. The new method has
potential applications in both computational physics and engi-
neering. © 1995 Academic Press, Inc.

1. INTRODUCTION

The study of the stability of boundary layer flows in the
context of linear theory gives rise to various instabilities such
as Tollmien—-Schlichting (T-S), Gortler, crossiiow, attachment-
ling, and secondary instabilities (see for example Malik [1]).
When the normal-mode approach (see for example Mack |2],
Maldik [3]) is used to analyze such instabilities, the common
mathematical framework constitutes a system of differential
eigenvalue problems. These eigenvalue problems have, in gen-
eral, various free parameters such as the frequency of the distur-
bance, the components of the wave-number veclor, the growth
rate components, the Reynolds number, the Gortler nuniber,
and the amplitude of the primary disturbance in secondary
instabiiities. The frec paramcters in a certain cigenvatue prob-
e are related through the dispersion relation (or relations),
which for the stability problem under discussion is not known
analytically. To understand the response of boundary-layer flow
1o various instabilities, the interrelationships between the pa-
rameters of the associated dispersion relation (or relations) must
be understood.

For a boundary-layer stability problem, the variation of a
disturbance growth rate with various parameters of the associ-
ated dispersion relation or with flow conditions can be studied.
To describe the effect of a certain parameter as stabilizing or
destabilizing, the effect on the maximum growth rate over all

values of one or more parameters of the dispersion relation is
considered. For example, suction can increase or decrease the
growth rate of a lixed-frequency second-mode wave in hyper-
sonic flow over a flat plate. However, suction stabilizes second-
mode waves because it decreases the maximum growth rate
over all Crequencies. This indicates the need to compute certain
stability characteristics, such as maximum growth rate or neu-
tral points, accurately and efiiciently. In this paper, we present
anew general method that can be used to directly and efficiently
compule ceriain characteristics related to the eigenvalue prob-
lem. For example, we will show how the maximum growth
rate can be computed as part of the solution. In Section 2, we
outling the methed. In Section 3, we apply the method to two
sample problems from the stability of boundary layers. Finally,
in Section 4, we snmmarize the findings.

2. GENERAL OUTLINE OF THE METHOD

In the linear quasi-paralle] stability analysis, the normal-
mode form of the solution is used to separate the temporal,
streamwise spatial, and spanwise spatial dependencies (see for
example Mack [2]). A fluctuation quantity ¢ is expressed as

q= {(y)ei(cu-h&:—m] + ec, (])

where x is the streamwise coordinate, y is the normal coordinate,
z is the spanwise coordinate, and ¢ is the time. The function
£ is complex, and cc denotes the complex conjugate of the
preceding term. The parameters o, 8, and w are complex in
general. In temporal stability analyses, a (real) is the distur-
bance streamwise wave number, and 8 (real) is the disturbance
spanwise wave number. The real part of w, (denoted by w,),
is the disturbance fregquency, and the imaginary part of w,
{(denoted by w;), is the temporal disturbance growth rate. In
spatial stability analyses, w (real) is the disturbance frequency,
the real parts of e and 3 (e, and 3,) are the disturbance stream-
wise and spanwise wave numbers, respectively, and the imagi-
nafy parts of ¢ and B (o; and B,) are the disturbance streamwise
and spanwise rates of decay, respectively. By substituting Eq.
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(i) in the linearized Navier—Stokes equations, the resulting
homogeneous ordinary differential equations can be writien
as a sysiem of first-order equations. Homogeneous boundary
conditions associated with the governing equations result in an
eigenvalue problem. If the equations are written in complex
variables, then the resulting system has a single complex disper-
sion relation (two real relations); therefore, in principle, the
real and imaginary parts of all the free parameters in the system
can be specified, except for two real parameters which can
be determined.

The system of first-order complex ordinary differential equa-
tions is expressed as

D{EY = [Fllgn: o, &% ., B, 8% .., o, R, G, A, )L (@)
where
D = didy

and g,, are mean-flow quantities that are generally functions of
v. The parameters R, G, A, ... are other free parameters that
can occur in certain stability eigenvalue problems, For example,
R can be the local Reynolds number, G can be the Gortler
number, and A can be the disturbance amplitude in a certain
wave-interaction problem such as the amplitude of the primary
wave in secondary instability or the amplitude of the Tollmien—
Schlichting (T-S) wave in a T-S—Gortler wave-interaction
problem. If we have r complex equations, then ¢ is a column
vector with n complex components and F is a square matrix
of order # X n with complex elements. Associated with system
(2) are m (m << n) homogeneous boundary conditions at one
boundary (boundary I) and n — m boundary conditions at
boundary II. Because { is complex and in the presence of a
single complex dispersion relation, a normalization condition
can be used. Without loss of generality, assume that the normal-
ization condition is

{r = ¢ at boundary I, (3

where ¢ is any nonzero complex number. Equation (2) and the
boundary conditions at boundaries 1 and 1§ can be solved by
assuming the real and imaginary parts of the all free parameters
a, B. w, R, ... (except for two); replacing one of the homoge-
neous complex boundary conditions at boundary I by the inho-
mogeneous boundary condition in Eq. (3); solving the resulting
system for initial guesses for the two sought free parameters;
and updating the value of two free parameters to satisfy the
replaced homogeneous boundary condition at boundary I, and
so on, until the two sought free parameters do not change within
a preset tolerance.

A second approach for computing the two free parameters
is to augment the system of equations (2) by two trivial, real
differential equations that result from setting the derivative of
each of the two free parameters with respect to y to zero. This
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change increases the order of the system of real differential
equations from 2n to 2n -+ 2, because the two free parameters
are now treated as dependent variables, the resulting system is
nonlinear. The nonlinear 2n + 2 real homogeneous system of
differential equations can be solved subject to the 2m real
homogeneous boundary conditions at boundary 1, 2n — 2m real
homogeneous boundary conditions at boundary II, and the two
real boundary conditions (at least one of the 2 is inhomoge-
neous) that result from the normalization condition (3). The
required two free parameters are part of the solution.

The procedure described in the above paragraph can be used
to directly compute important stability characteristics such as
neutral curves or threshold amplitudes of excitation in wave-
interaction problems. For example, to compute neutral curves
for two-dimensional disturbances (8 = 0) in two-dimensional
boundary-layer flow over a flat plate, set w; = o; = 0, specify
o, and compute o, and R. To do the same for three-dimensional
disturbances (8 ## 0) in two-dimensional boundary-layer flow
over a flat plate (8 ; = 0), 8,, must be specified w; = a; = 0,
must be set and «, and R must be computed. However, the
direct computation of the outmost neutral curves (over all values
of B,) with the above procedure is not possible. Furthermore,
the computation of the maximum spatial growth rate, over all
frequencies or over frequencies and spanwise wave numbers
in two-dimensional flow, is not possible. We will shortly de-
scribe a procedure that allows the direct computation of
these quantities.

Equation (2} can be differentiated with respect to @ as

af aF do do B
foR oS (LA | DAL TR
{aw} [aw] (q”’aw’za 30’ e

B 19k G A ...){(}

2B (4)

dw’ " e dw’ dw

+ [FlGm. o, %, ., B 32, o, R, G A, L) {6_}

ow

If the system given by Eq. (2) has #» complex differential equa-
tions and m homogenecus boundary conditions at boundary 1,
then the same is true for the system given by Egs. (4). Although
system (2) is decoupled from system (4), the opposite 1s not
true. Systems (2) and (4) together have 2n complex differential
equations, 2m boundary conditions at boundary I, and 2n -
2m boundary conditions at boundary I1I. System (2), treated as
a nonlinear system, has the dependent variables e, 3, ..., and
systemn {4) introduces additional dependent variables (de/dw,
dB/dw, ...). Systems (2) and (4) are augmented by the trivial
equation

do_ 0B _
dw Jw
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A normalization condition similar to {3) can be used; thus,

e

dw

=c. (5)

Furthermore, system (4) introduces a second complex disper-
sion relation, in addition to the one introduced by system (2).

With the system given by Eqs. (2)-{5), stability characteris-
tics such as the maximum spatial growth rate of two-dimen-
sional disturbances in two-dimensional compressible flow over
a flat plate at a fixed Reynolds number can now be computed
directly. For this case, both systems (2} and (4) introduce six
complex differential equations; thus, 12 complex equations are
introduced. Other equations are

Da=Dw=Da—a=0.
dw

If @ and « are treated as complex, then 15 complex differential
equations with 15 complex variables exist, and 30 real boundary
conditions are required. System (2) gives three complex homo-
geneous boundary conditions at boundary I and three more at
boundary 1I; the same is true for system (4), which results in
24 real boundary conditions. The normalization conditions (3)
and (5) give four more real boundary conditions, which results
in a total of 28 real boundary conditions. Because w is real in
spatial stability analysis, the 29th condition is @, = 0. The
system can be closed by requiring that the spatial growth rate
«; is maximum over all frequencies (i.e., da,/dw = 0). Hence,
the solution we compute for «,, @, and det,/dew (the reciprocal
of the group velocity) corresponds to the maximum growth rate
—a;. Note that the computations yield four free parameters
because the coupled system has two complex (four real) disper-
sion relations.
If system (2) is differentiated with respect to 3, then

af ar do doy
pisel |2t 92 ¥ 1,28, ...
{6‘3} [6w](q""aﬁ 2o P
dw IR aG 9A

3B 9 9B 3B ) Ld ©

* [F](qm’a’ az’ b4 B’ 62’ ---‘s w, R, G,A, ) {(?'é}

The resulting system {(coupled with system (2)), the associated
trivial differential equations, and the boundary conditions can
be used to directly compute additional stability characteristics.
For example, the maximum spatial growth rates over all values
of B of three-dimensional disturbances in two-dimensional
compressible flow over a flat plate at a fixed w and R can be
computed from these systems. Systems (2), (4}, and (6) together
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can be used to directly compute additional stability characteris-
tics. For example, if we consider three-dimensional distur-
bances in two-dimensional compressible flow over a flat plate,
then the three systems result in 24 complex differential equa-
tions. At the same R, the additional trivial equations are

9 ?
Da=DB=Dw=D£:D6—‘;=0.
Note that
@=@@=@/y
B dadB B/ ow
and

/(%)

da of3

which results in 29 complex differential equations. Systems (2),
{4), and (6) have 24 complex (48 real) homogeneous boundary
conditions. The normalization conditions introduce 6 real
boundary conditions with a total of 54 real boundary conditions.
For spatial stability, es; = 0, which results in 55 real boundary
conditions. For two-dimensional flow, and to compute the maxi-

mum growth rate over all frequencies and spanwise wave num-
bers, the remaining three boundary conditions are

day _ 0 _
dw 9F

Bi = 09
In a three-dimensional flow over an infinite swept-wing, with
the assumption thai 8; = 0, the envelope method is imple-
mented by setting

60."1 Bai
g, =t

= =0

dw 483

just as in the previously considered two-dimensional case.
In the above example, if we use

directly in the equations and not as additional conditions, then
the order of the system of equations is reduced from 58 real
differential equations to 54 real differential equations. However,
by assuming all the quantities in the equations to be complex,
the resulting equations and the associated Jacobian have a struc-
ture that allows them to be easily split into real and imaginary
parts. This approach is convenient for the solution method used
in these applications.
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If system (2) is differentiated with respect to «, then some
stability characteristics can be computed directly in the context
of temporal stability theory. The group velocity that is part of
the solution can then be used to convert the temporal growth
rates into spatial growth rates. System (2) can also be differenti-
ated with respect to R, and, from the resulting coupled system,
other stability characteristics can be computed, such as the
maximum growth rate over all values of R. We foresee many
other possible extensions of the outlined method for directly
computing other stability characteristics in both simple and
complicated flows. Furthermore, the method in its general form
15 not restricted to hydrodynamic instability problems, but can
be applied to any eigenvalue problem, In that case, differentiat-
ing the eigenvalue problem with respect to the various parame-
ters of the dispersion relation (or relations) might result in a
coupled system that can be used to directly compute some
significant characteristics of the eigenvalue problem under con-
sideration. )

3. APPLICATIONS

In this section, we apply the previously outlined method to
two sample problems. The first problem is the viscous instability
of incompressible flow over a flat plate, and the second problem
is the inviscid instability of compressible flow over a flat plate.
In both problems, the application of the method in order o
compute the maximum growth rate over all frequencies is dem-
onstrated. The results for the first problem show the maximum
growth rates as they vary with Reynolds number at various
levels of suction. For the second problem, the results show the
effect of heat transfer, suction, and free-stream temperature on
the maximum growth rates of second-mode waves at various
Mach numbers.

3.1. Viscous Instability of Incompressible Flow over a
Flar Plate

The incompressible mean flow over a flat plate with self-
similar suction is governed by the equation (see for example
Asfar et al. [4])

a*u
d?

di/
+gz’b‘=

0, (N
where

g:—Ver%f:UdQ') (8)

and

_, [Re
¢nyj ©
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The boundary conditions are

U=0,g=V, atd=0 (10}
U—1 as¢—»e, (1D
where
v
V.= VxRe— (12)
L
and
UxL*
Re = - (13a)
v
X%, yE
(x,y) = LD 2 ) (13b)
*
U=U— (13c)
Uk

In the above equations, x and v are the nondimensional stream-
wise and normal coordinates, respectively, made nondimen-
sional with respect to a constant reference length L*. The stream-
wise nondimensional velocity U/ is made nondimensional with
respect to the free-stream velocity U%. The free-stream Reyn-
olds number is Re, v* is the kinematic viscosity, and v} is the
dimensional transverse suction velocity at the wall. The suction
velocity v¥ and, consequently, V,, are negative for suction and
positive for blowing.

The quasi-parailel stability of the flow is formulated by using
the normal-mode form given by Eq. (1}. For only two-dimen-
sional disturbances, we let

(v, pY = (L1, &3, L) ™ + ce (14}
If Eq. (14) is substituted into the linearized quasi-parallel distur-
bance equations (see for example Asfar et al. [4]), which are
derived from the Navier—Stokes equations, then we obtain

il +D&6H=0 (15)
1
LD 4 LA DUL el =0 ()
—lng +£§ +D{,=0 (17)
R 3 R 3 4 .

where

I'=a'+iRlalU - w) {18a)
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U%6F
R= o (18b)
kg
&= [2Z (18c)
Uk
and D = 3/an. In the above equations, we have
E S
7 (19)

The parameters o and 8 are complex in general. The boundary
conditions are

H=8=0 atn=0

H—>0 asmn— w

(20)
21

Egs. (15)-(17) can be rewritten as a system of first-order differ-
ential equations in the form

D{¢} = [FI{¢). (22)
where
=14 & G ol (232)
and
& = D¢ (23b)

The complex elements of the 4 X 4 matrix F are given in
Appendix A.
If Egs. (20)~(22) are differentiated with respect to w, we get

oL\ | oF 9
D {am} [aw} {¢r+ [F] {aw} (24)
90 _ 94 _ =
0 o 0 atnp=0 {25)
and
ag"—) 0 asn— o (26}

ow

where 0F/dw is a 4 X 4 matrix with its elements generated
by differentiating the elements of F with respect to @. This
differentiation gives rise to the quantities da/dw and dR/dw. If
we are interested in performing calculations at a fixed Reynolds
number R, then dR/dw is set to 0. Equations (20)—(22) are
decoupled from Eqs. (24)(26), but the opposite is not true. If
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@, o, and dafdw are treated as dependent variables, then Eqgs.
(22} and (24) can be rewritten as a system of first-order differen-
tial equations as

do o’ dw de’ Y e

{2 = {f:.,sz, G, 4, 25 96 96 3L aa} (272)

and

{g} = {‘_fla fla élv ‘E&h gSs Eﬁ! §7’ ‘2——8’ §91 gl{h gll}T- (27b)

Then, we have

Dig} = [HN{é&L (28)
where H is an 11 X 11 matrix of complex elements with its
nonzero elements given in Appendix B. The system of Eq. (28)
has 11 complex differential equations; to close the system we
need 22 real boundary conditions. The boundary conditions
(20} and (25) are rewritten as
Ei=&=&=6=0 atn=0 (29)
to supply eight real conditions. The boundary conditions (21)
and (26) supply eight additional real asymptotic conditions in
the free stream, which are implemented numerically by solving
the constant coefficients system (28) in the free stream, in-
verting the eigenfunctions matrix, and demanding the bounded-
ness of the disturbances in the free stream. Four more boundary
conditions follow from the normalization conditions, which we
choose as
E=&=1 atn=0 (30)
The result is a total of 20 boundary conditions. Two additional
conditions are provided by requiring that

w; = Imag(£,,) = 0 31
%% _ Imag(£,) = 0 (32)
[1}]

J

where Imag denotes the imaginary part of a complex quantity.

To solve the system (28) and the associated boundary condi-
tions, our choice of solution method must split the governing
equations and boundary conditions into real and imaginary
parts; the Jacobian of the system (28) must be derived and split
into real and imaginary parts. Note here that the complex system
(28) can be easily split numerically into real and imaginary

parts as
{Dgr} [Hr —Hlj|{‘!:"r}
D¢, - H H 1l

(33)
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FIG. 1.

The associated boundary conditions are split similarly. The
complex Jacobian J of the complex system {28) has the complex
elements Jy;, where

_ (D&

=5
f

(34)

and its elements are given in Appendix C. The real Jacobian
JJ has the structure

[J,, J,,] [Real (5 —Imag(J)}
[ = = (35)
Jo T Imag(J) Real(J)

The resulting nonlinear system of real differential equations,
nonlinear real boundary conditions, and the nonlinear real
Jacobian is supplied to the IMSL subroutine BVPFD [5],
which solves a nonlinear, two-point boundary value problem.
The subroutine is based on the code PASVA3, which uses
finite differences with deferred correction. As a result of
the solution we compute ¢, w, and da/dw to correspond to the
maximum spatial growth rate over all frequencies w. At the

(a) Variation of maximum growth rate with Reynolds number for four levels of self-similar suction. (b) Corresponding frequencies. (c) Greup velocities.

maximum growth rate da/dw, the reciprocal of the group
velocity and, consequently, the group velocity are real. Note
also that as part of the solution we compute four real, free
parameters (¢ complex, o real, and da/dw real) because the
system (24) has introduced a second complex dispersion
relation, in addition to the original complex dispersion relation
of system (22).

We solved the considered problem to compute the maximum
spatial growth rates as a function of R at four levels of self-
similar suction. The maximum spatial growth rates are shown
in Fig. 1a, and the corresponding frequencies and group veloci-
ties are shown in Figs. 1b and 1c, respectively.

The central processing unit (CPU} time required to solve the
22 real, nonlinear differential equations for computing maxi-
mum disturbance growth rate is about three times the CPU
time required to solve the original eight real, linear differential
equations for one eigenvalue (not a maximum). The CPU time
required to solve the maximum via indirect method depends
upon the separation between the known eigenvalue and the
desired eigenvalue, but clearly the direct approach saves scien-
tist time. The results of direct computation of the maximum
disturbance growth rate are in perfect agreement with the results
of the indirect computations.
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3.2, Inviscid Instability of Compressible Flow over a
Flat Plare

The compressible mean flow over a flat plate with self-similar
suction is governed by the equations (see for example Asfar
et al. [4]}

d dt au
— —|+g—== 36
d¢(’°“d¢) 16 0 (36)
1 d dT dr dauy’
— L)+ gL (- DM () =0 (37
Prdd)(ﬂudqb) 848 (y— 1 pu(d¢) (37)
1 e
g= Vot [ Ude (38)
Re »
o= = pay (39)
The boundary conditions for the adiabatic wall are
dT
i3 Oand g w atg=0. (40a)
For a wall with heat transfer,
T, . .
U=0, g=-V,, and T8 specifiedat =0  (40b)
ad
In the free stream, the boundary conditions are
U= 1, T—1 as¢— o, (41)
where
xCx
pr=£ (42a)
K
UiL*
Re = (42h)
vE
Ui
M,=—— (42¢)
(y — DC¥T:
*
V, = ViRe (424)
T, U*
(x*, y*)
* #
v=-L =T (42f)
U* T
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% * *
(p. o, ¥} = (E-,”—,E)
pEopk v

In the above equation, x and y are the nondimensional stream-
wise and normal coordinates, respectively, made nondimen-
sional with respect to a constanmt reference length L*. The
streamwise nondimensional velocity {/is made nondimensional
with respect to the free-stream streamwise velocity U#%. The
temperature T is made nondimensional with respect to the free-
stream static temperature 7% . The density p, dynamic viscosity
M, and kinematic viscosity » are made nondimensional with
respect to their free-stream values, p%, w¥, and %, respectively.
The free-stream Reynolds number is Re, the free-stream Mach
number is M., and the Prandtl number Pr is constant; C} is
the specific heat at constant pressure, and «Z is the free-stream
dimensional thermal conductivity. The dynamic viscosity p*
varies with temperature in accordance with

(42g)

_ 1.4587*¥2 X 1073
T+ 1104

p* =0.693873 X 1078 T

*

forT* > [104 K (43a)

for T* < 1104 K, (43b)
where p* is given in cgs units. The dimensional suction veloc-
ity v is negative for suction and positive for blowing, as is
the notation for V,,. The ratic of specific heats y is constant
and equal to 1.4. The nondimensional wall temperature is de-
noted by T, and the nondimensional adiabatic wall temperature
is denoted by T,,.

The quasi-parallel inviscid instability equations of the com-
pressible disturbed flow have various forms [2]. In this analysis,
we use the form given by

iap, DU, a?+ Bt Ml
pg = fbley (2B MDY gy
0.01100 |-
-ai
0.01050 ——
0.01000 |-
0.00950 L

0.200

FIG. 2. Variation of the inviscid growth rate of second-mode waves with
frequency at M. = 5, T. = S0 K, and Pr = 0.72.
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FIG. 3. (a} Variation of maximum growth rate of second-mode inviscid disturbances with Mach number for three levels of heat transfer at 7. = 50 K
and Pr = 0.72. (b) Corresponding frequencies. (c) Corresponding group velocities.

D¢ =Ty, (45)  where
where D = d/dy, = —ilw — @) (50)
v = gt 4o (46a) If Eqgs. (44), (45), (48), and (49) are differentiated with respect
p = Gelettiu 4o (46b) to w and we assume
I'=—ip,(w — all,). (Ch) L a T
1 9y do
= =, = — 51
¢ {g"gz’aw’am’a’mam} (51a)

The boundary conditions at the wall are

and
=0 aty=20 (48)

{8 =1{&, &, &, &, &, &, &1 (51b)

and in the free-stream, the boundedness of the disturbance

requires that then the resulting system, which is coupled with the system of

Egs. (44) and (45), can be rewritten as
2 2 172
L- (ELB— + Ma,) £=0 (49)

It D{&} = [Gligh (52)
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where G is a 7 X 7 matrix of the corresponding complex
elements. The boundary conditions are rewritten as

§i=&=0 aty=0 (33)
£—7T285=0 aty=y, (54)
and

I @ )
f}_Tuzg‘iiﬁa_;;fz:O aty:yei (55)

where
&+p° '
= 5TF Lo (56)

_l(§ﬁ - fﬁ)

and 7, is the value of # at the edge of the boundary layer. Note
that we are interested in performing calculations at a constant
value of 3; therefore, B is not treated as a dependent variable
and df3/dw is set equal to 0. The system of Egs. (52) has
14 real differential equations, and Eqs. (53)—(55) offer 8 real

V. =1

Lud

0.0075 |-

(a)

(' a‘,')

0.0050 |-

0.0025 -

0.0000 L——

20

0.725

0.700

Group Velocity

0675

0.650

0.625 =
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boundary conditions. Four real boundary conditions foliow
from normalization; thus, we let

LE=&=1 aty=0 (57)
The remaining two boundary conditions follow from using
spatial stability (e = 0) and the requirement of the maximum
spattal growth rate over all frequencies (i.e., da,/dw = 0). These
conditions are rewritten as

Imag(&) =0
Imag(&;) = 0.

(58)
(39

The system is now closed. The solution procedure and the split
into real and imaginary parts follow the approach outlined in
the previous application.

We present results for the maximum growth rates over all
frequencies of two-dimensional (8 = 0) second-mode distur-
bances. Mack [2] showed that second-mode disturbances in
two-dimensional flows are most amplified when they are
aligned with the flow (two-dimensional disturbances). In the

FIG. 4.

(a) Variation of maximum growth rate of second-mode inviscid disturbances with Mach number for three levels of self-similar suction at adiabatic

conditions, T» = 30 K and Pr = 0.72. (b) Comresponding frequencies. (¢) Corresponding group velocities.
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FIG. 5. (a) Variation of maximum growth rate of second-mode inviscid disturbances with Mach number for three freestream temperatures at adiabatic
conditions with no suction and Pr = 0.72. {b) Corresponding frequencies. (c) Corresponding group velocities.

results, we present the effects of heat transfer, self-similar suc-
tion, and free-stream static temperature on the maximum growth
rates of second-mode disturbances at various Mach numbers,
The results of the direct computation of the maximum distur-
bance growth rate are in perfect agreement with the results of
the indirect computation.

Cooling destabilizes second-mode disturbances [2], except
at targe levels {6] of cooling, where the maximum growth rate
might actually decrease slightly with cooling (Fig. 2). The
results in Fig. 3a show this effect. Figure 3b clearly shows
that cooling shifts the maximum growth rate toward a higher
frequency. The group velocity of second-moede disturbances
(Fig. 3c) decreases with cooling and increases with Mach num-
ber (except at Mach numbers smaller than 3, where the first
and second modes merge).

In Fig. 4a, we show the effect of self-similar suction and
blowing on the inviscid maximum growth rates as a function
of Mach number. The figure clearly shows that at moderate
Mach numbers suction inviscidly stabilizes second-mode dis-
turbances, although the stabilization is not as large as what is
obtained from viscous stability theory. This result is in

agreement with the findings of Mack [7]. At relatively large
Mach numbers, suction becomes inviscidly destabilizing; blow-
ing is stightly stabilizing. This result indicates that most of the
stabilizing effect of suction. particularly at high Mach numbers,
is due to viscosity, which agrees with the conclusion of Malik
[8]. Figure 4b shows that suction shifts the frequencies that
correspond to the maximum growth rates toward higher values,
such as the case with viscous calculations. The group velocity
(Fig. 4¢) increases with suction and decreases with Mach num-
ber until the merging region of the first and second modes,
where it increases sharply.

The variation of the maximum inviscid growth rate with
Mach number for three free-stream temperatures is shown in
Fig. 5a. At high Mach numbers, an increase in the free-stream
temperature increases the maximum growth rate whereas at
relatively low Mach numbers the opposite takes place. Because
the inviscid instability problem has, by definition, no viscosity
term, then the effect of the free-stream temperature on the
stability eigenvalue comes only through its effect on varying
the viscosity in the mean flow. Viscous stability calculations
performed by Mack [9] at Mach 6.8 show that an increase
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in the free-stream temperature has a stabilizing effect. The
trequencies that correspond to the maximum growth rates in-
crease as the free-stream temperature increases (Fig. 5b). The
group velocities that correspond to the maximum growth rates
are shown in Fig. 5c.

4. SUMMARY

A new method that allows direct computation of boundary-
layer stability characteristics is presented and applied to two
sample problems: the viscous instability of incompressible flow
over a flat plate and the inviscid instability of compressible
flow over a flat plate. The method, in its general form, can be
applied to any differential eigenvalue problem. The method
consists of differentiating the original eigenvalue problem with
respect to one or more parameters of the dispersion relation.
The resulting new problem (or problems) are coupled with
the original problem; however, the opposite is not true. Each
differentiation of the original problem with respect to a parame-
ter of the dispersion relation introduces an additional dispersion
relation. The resulting problem (or problems) can be solved
with the original problem simultaneously and with some of
the parameters of the dispersion relation treated as dependent
variables. The desired characteristic imposes a condition (or
conditions) that is used as a boundary condition along with the
original, differentiated, and normalization boundary conditions.
Several examples demonstrate that the coupled problem is
closed.

APPENDIX A

The nonzero elements of matrix [F] in Eq. (22) are

fz=1
Fa=T
Jis = RDU
f34 = jal
fa = —ia
—lo
fo= g
r
f43 = = E;
where

I' = & + iR(al — w).

APPENDIX B

The nonzero elements of matrix [H] in Eq. (28) are
h]z =1

h21 =T
hgg = RDU
hyy = iR§9
h56 =1
hﬁl =A
hey = IRE)
hﬁ5 =T

h67 = RDU
heg = iR&
hy = — i&y
has = —i&s
R 11_3&'
A
By = E
H
fgs = — Ef&)
r
her = R’
where
I'= f% + iR(&U — £y)
and

A=24&E, +IRUE, —

APPENDIX C

The nonzero complex elements of the compiex Jacobian [J]
in Eq. (34) are

J|2 =1
J}_[ = F
.123 = RDU
Ju = inf)
+ iR
Xk ag, T
al’
J =
wm=& 9
Jy=—i&
Jw = —ié
i
Jp = _Efav
r
Ju= _E‘fs
i ! ar
S Efz Rf: TA
1 o’
J —_ i
4,10 Rfs FrR
Jjﬁ = 1
Jo =
Jou = iRE),
ij =T
Jss = RDU
Jeg = iR&
o'  aA
—+ —+ IR
=& 659 2%, &
J
610 = fs 3510
+ iR
Js,n §| Y iRE,
Ju = —iky

Jis = —id



Juw = —i&
Jon = —i

i
JSI__Egu

A
Jsa—*E

i
fss=_ﬁgg

r
Jsvz_E

i all
159=*I_?§5 Ré 3¢,
J =—-—
8,10 gd{,—']o
Js,n:*”‘fl“_fsag

1
where

F =&+ iR(&U = £io)

= 2§g§1| + lRU§|| — iR

GF

afg
ol
P
aA
b

aA

afn

=2+ iRU

=24

= 24, + iRU.
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